Bio-inspired Murray materials for mass transfer and activity

نویسندگان

  • Xianfeng Zheng
  • Guofang Shen
  • Chao Wang
  • Yu Li
  • Darren Dunphy
  • Tawfique Hasan
  • C. Jeffrey Brinker
  • Bao-Lian Su
چکیده

Both plants and animals possess analogous tissues containing hierarchical networks of pores, with pore size ratios that have evolved to maximize mass transport and rates of reactions. The underlying physical principles of this optimized hierarchical design are embodied in Murray's law. However, we are yet to realize the benefit of mimicking nature's Murray networks in synthetic materials due to the challenges in fabricating vascularized structures. Here we emulate optimum natural systems following Murray's law using a bottom-up approach. Such bio-inspired materials, whose pore sizes decrease across multiple scales and finally terminate in size-invariant units like plant stems, leaf veins and vascular and respiratory systems provide hierarchical branching and precise diameter ratios for connecting multi-scale pores from macro to micro levels. Our Murray material mimics enable highly enhanced mass exchange and transfer in liquid-solid, gas-solid and electrochemical reactions and exhibit enhanced performance in photocatalysis, gas sensing and as Li-ion battery electrodes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Free convective heat and mass transfer of magnetic bio-convective flow caused by a rotating cone and plate in the presence of nonlinear thermal radiation and cross diffusion

This article explores the heat and mass transfer behaviour of magnetohydrodynamic free convective flow past a permeable vertical rotating cone and a plate filled with gyrotactic microorganisms in the presence of nonlinear thermal radiation, thermo diffusion and diffusion thermo effects. We presented dual solutions for the flow over a rotating cone and a rotating flat plate cases. Similarity var...

متن کامل

Mass Transfer Coefficients in Pulsed Column for Separation of Samarium and Gadolinium

The mass transfer performance of a pulsed disc and doughnut column for extraction of samarium and gadolinium from aqueous nitrate solution with D2EHPA was investigated. The effects of operating parameters such as pulsation intensity, continuous and dispersed phase velocities on column performance were investigated. The axial dispersion model was used to obtain the overall mass transfer coef...

متن کامل

Bio-Inspired Polymeric Structures with Special Wettability and Their Applications: An Overview

It is not unusual for humans to be inspired by natural phenomena to develop new advanced materials; such materials are called bio-inspired materials. Interest in bio-inspired polymeric superhydrophilic, superhydrophobic, and superoleophobic materials has substantially increased over the last few decades, as has improvement in the related technologies. This review reports the latest developments...

متن کامل

Bio-Inspired Materials and Micro/Nanostructures Enabled by Peptides and Proteins

Bio-inspired materials and micro/nanostructures enabled by peptides and proteins

متن کامل

Biologically inspired band-edge laser action from semiconductor with dipole-forbidden band-gap transition

A new approach is proposed to light up band-edge stimulated emission arising from a semiconductor with dipole-forbidden band-gap transition. To illustrate our working principle, here we demonstrate the feasibility on the composite of SnO2 nanowires (NWs) and chicken albumen. SnO2 NWs, which merely emit visible defect emission, are observed to generate a strong ultraviolet fluorescence centered ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017